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We calculate the pion vector and scalar form factors in two-flavor QCD. Gauge configurations are

generated with dynamical overlap quarks on a 163×32 lattice at a lattice spacing of 0.12 fm with
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nected diagrams to the scalar form factor is calculated employing the all-to-all quark propagators.

We present a detailed comparison of the vector and scalar radii with chiral perturbation theory to

two loops.
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1. Introduction

Pion electromagnetic form factorFV(q2) is one of the fundamental observables in hadron
physics. An analysis of experimental data based on chiral perturbation theory (ChPT) at two loops
leads to a precise estimate of the charge radius〈r2〉V [1]. A detailed comparison of〈r2〉V between
ChPT and non-perturbative calculations on the lattice may provide a good testing ground for recent
lattice simulations in the chiral regime as well as a better understanding of the chiral behavior of
FV(q2).

While there is no experimental processes directly related to the scalar form factorFS(q2), the
chiral behavior of the scalar radius〈r2〉S is interesting, as it provides a determination of the LECl4
and has a 6 times enhanced chiral logarithm compared to〈r2〉V . A non-perturbative determination
on the lattice is challenging, because we need to evaluate disconnected three-point functions.

In this article, we update our analysis ofFV(q2) reported at the last conference [2] with doubled
statistics, and present newly obtained results forFS(q2). These quantities are measured on gauge
configurations of two-flavor QCD on a 163×32 lattice generated with the overlap quark action along
the fixed topology strategy [3]. The lattice spacing determined from the Sommer scaler0=0.49 fm
is a= 0.1184(21) fm. We refer the reader to Refs.[4, 5] for detailed setup and overviews of our
production simulations.

2. Measurement of pion correlation functions

We measure pion correlators through all-to-all quark propagators [6]. Contributions of 100
low-lying modes(λ (k), u(k)) (k=1, ...,Nep;Nep=100) of the overlap operatorD are evaluated ex-
actly, whereas the remaining high modes are taken into account stochastically by theZ2 noise
method. We prepare a single noise vector for each configuration, and dilute [6] it intoNd =

3× 4×Nt/2 vectorsη (k) (k= 1, ...,Nd) with support on a single value for color and spinor in-
dices and at two time-slices. The all-to-all propagator canthen be expressed in a simple form
D−1 = ∑Nvec

k=1 v(k) w(k)† (Nvec = Nep+Nd) with two set of vectors

v(k) =

{

u(1)

λ (1)
, . . . ,

u(Nep)

λ (Nep)
,x(1), . . . ,x(Nd)

}

, w(k) =
{

u(1), . . . ,u(Nep),η (1), . . . ,η (Nd)
}

, (2.1)

wherex(d) =D−1(1−∑k u(k) u(k)†)η (d).
From thev andw vectors, we may construct meson fields at a temporal coordinate t with the

Dirac matrixΓ and spatial momentump

O
(k,l)
Γ,φ (t;p) = ∑

x,r
φ(r)w(x+ r, t)(k)† Γv(x, t)(l) e−ipx. (2.2)

For the smearing functionφ(r), we choose the localφl (r)=δr,0 and exponential functionφs(r)=

exp[−0.4|r|]. Connected and disconnected three-point functions as wellas the subtraction term of
the vev contribution to the scalar form factor, shown in Fig.1, are calculated from these meson
fields as

C(conn)
πΓπ (∆t,∆t ′;p,p′) =

1
Nt

∑
t

Nvec

∑
k,l ,m=1

O
(m,l)
γ5,φs

(t + ∆t + ∆t ′;p′)O
(l ,k)
Γ,φl

(t + ∆t;p−p′)

×O
(k,m)
γ5,φs

(t;−p), (2.3)
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Figure 1: Connected (left-most diagram) and disconnected (middle diagram) three point functions. Note
that we have the contribution toFS(0) from the right-most diagram due to the non-zero vacuum expectation
value of the scalar operatorS.

C(disc)
πΓπ (∆t,∆t ′;p,p′) =

1
Nt

∑
t

Nvec

∑
k,l=1

O
(k,l)
γ5,φs

(t + ∆t + ∆t ′;p′)O
(l ,k)
γ5,φs

(t;−p)

×
Nvec

∑
m=1

O
(m,m)
Γ,φl

(t + ∆t;p−p′), (2.4)

C(vev)
πΓπ (∆t,∆t ′;p,p′) =

1
Nt

∑
t

Nvec

∑
k,l=1

O
(k,l)
γ5,φs

(t + ∆t + ∆t ′;p′)O
(l ,k)
γ5,φs

(t;−p)

×

〈

1
Nt

∑
t ′

Nvec

∑
m=1

O
(m,m)
Γ,φl

(t ′;p−p′)

〉

conf

, (2.5)

where〈· · · 〉conf represents a Monte Carlo average. We denote the temporal separation and spatial
momentum for the initial (final) meson by∆t andp (∆t ′ andp′), respectively.

Our measurements are carried out at four values of the quark massmud in the range 290.
Mπ [MeV] .520. We explore the region of the momentum transfer−1.7.q2 [GeV2]≤0 by taking
the meson momentump with |p|≤2. Note that the spatial meson momentum is shown in units of
2πa/L in this article. While we have simulated only the trivial topological sector, the effect of the
fixed global topology is suppressed by the inverse of the space-time volume∼ 1/V [3].

3. Determination of pion form factors

We calculate effective value of the vector form factor from aratio

FV(∆t,∆t ′;q2) =
2Mπ

Eπ(|p|)+Eπ(|p′|)

RV(∆t,∆t ′; |p|, |p′|,q2)

RV(∆t,∆t ′;0,0,0)
, (3.1)

RV(∆t,∆t ′; |p|, |p′|,q2) =
C(conn)

πγ4π (∆t,∆t ′;p,p′)

Cππ,φsφl (∆t;p)Cππ,φl φs(∆t ′;p′)
. (3.2)

HereCππ,φφ ′ is the pion two-point function with the smearing functionφ (φ ′) for the source (sink)
operator, and it can also be calculated from the meson field Eq. (2.2). We take the average ofRV

over momentum configurations corresponding to the same value of q2. This average as well as
that over the location of the source operator in Eqs. (2.3) – (2.5) leads to an accurate estimate of
FV(∆t,∆t ′;q2) as shown in Fig. 2. The vector form factorFπ(q2) is determined from a constant fit
in a range of(∆t,∆t ′), whereFV(∆t,∆t ′;q2) shows a reasonable plateau. We include the leading
finite volume correction (FVC) [7] toFV(q2).

The scalar form factor normalized at a certain momentum transferq2
ref can be calculated from

a similar ratio

3
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Figure 2: Effective value ofFV(∆t,∆t ′;q2) (left panels) andFS(∆t,∆t ′;q2)/FS(∆t,∆t ′;q2
ref) (right panels) at

mud∼ms,phys/2, wherems,phys is the physical strange quark mass.

FS(∆t,∆t ′;q2)

FS(∆t,∆t ′;q2
ref)

=
RS(∆t,∆t ′;q2)

RS(∆t,∆t ′;q2
ref)

, RS(∆t,∆t ′;q2) =
Cπ1π(∆t,∆t ′;p,p′)

Cππ,φsφl (∆t;p)Cππ,φl φs(∆t ′;p′)
, (3.3)

whereCπ1π =C(conn)
π1π −C(disc)

π1π +C(vev)
π1π . As Fig. 2 indicates,FS(q2) atq2=0 suffers from a relatively

large statistical error than those atq2 6=0 due to the severe cancellation betweenC(disc)
π1π andC(vev)

π1π .
We therefore useFS(q2) normalized at the smallest non-zero momentum transfer with|qref|=1 in
the following analysis. The normalized form factorFS(q2)/FS(q2

ref) is determined by a constant fit,
while FVC toFS(q2) is not available so far and is not taken into account.

4. Parametrization of q2 dependence

The vector and scalar form factors are plotted as a function of q2 in Fig. 3. We observe that
FV(q2) is close to the pole dependence 1/(1− q2/M2

ρ) with Mρ measured at simulatedmud. Its
q2 dependence is therefore parametrized by the following formof the ρ pole with a polynomial
correction to determine the charge radius〈r2〉V and the curvaturecV

FV(q2) =
1

1−q2/M2
ρ

+c1q2 +c2(q2)2 +c3(q2)3 = 1+
1
6
〈r2〉V q2 +cV (q2)2 + · · · . (4.1)

Because the deviation from theρ pole is small, we obtain a reasonableχ2/dof∼1, and results for
〈r2〉V andcV are stable against the inclusion of the cubic correction term.
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Figure 3: Vector (left panel) and normalized scalar form factors (right panel) atmud∼ms,phys/2 as a function
of q2. Solid lines show our parametrization and its statistical error. In the left panel, we also plotρ pole
contribution expected from the vector meson dominance hypothesis by the dashed line.
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Figure 4: Chiral extrapolation of〈r2〉V (left panel) and〈r2〉S (right panel) based on one-loop ChPT. Star
symbols show the experimental value for〈r2〉V [1] and an indirect determination of〈r2〉S throughππ scat-
tering [10].

Such pole contribution in the scalar channel is not clear within our statistical accuracy. Our
data can be fitted to a simple quadratic form

FS(q
2) = FS(0)

(

1+
1
6
〈r2〉Sq2 +cS(q2)2

)

. (4.2)

We confirm that the result for the scalar radius〈r2〉S is stable if we switch to the cubic or single
pole formFS(0)/(1− q2/M2

fit) with Mfit as a fit parameter. The curvaturecS is however strongly
depends on the choice of the parametrization form, and henceis not used in the following analysis.

5. Chiral extrapolation

In one-loop ChPT, the radii〈r2〉V and〈r2〉S are given by [8]

〈r2〉V = −
1

NF2 (1+6N lr6)−
1

NF2 ln

[

M2
π

µ2

]

, (5.1)

〈r2〉S =
1

NF2

(

−
13
2

+6N lr4

)

−
6

NF2 ln

[

M2
π

µ2

]

, (5.2)

whereN=(4π)2. We set the renormalization scaleµ to 4πF , and fixF to the value determined
from our study of the pion mass and decay constant [9]. These fits are however not quite suc-
cessful as seen in Fig. 4. While our data of〈r2〉V are fitted with reasonableχ2/dof∼ 0.3, the
value extrapolated to the physical quark mass 0.362(4) fm2 is significantly smaller than experi-
ment 0.437(16) fm2 [1]. On the other hand, the one-loop formula for〈r2〉S with the enhanced
chiral log fails to reproduce our data and results in largeχ2/dof∼16. We note that similar mild
quark mass dependence of the radii is also observed by the ETMCollaboration with a different
discretization on a slightly finer lattice [11]. It is unlikely that the failure of the fits within one-loop
ChPT is caused by systematic uncertainties due to the fixed topology and the finite lattice spacing.

We then extend our analysis to two loops. The higher order contributions to the radii are given
by [1]

∆〈r2〉V =
1

N2F4

(

13N
192

−
181
48

+6N2r r
V,1

)

M2
π +

1
N2F4

(

19
6

−12Nlr1,2

)

M2
π ln

[

M2
π

µ2

]

, (5.3)
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Figure 5: Simultaneous chiral extrapolation of〈r2〉V (left panel) andcV (right panel) based on two-loop
ChPT (solid lines). We also plot one- and two-loop contributions by dashed and dotted lines, respectively.

∆〈r2〉S =
1

N2F4

(

−
23N
192

+
869
108

+88Nlr1,2 +80Nlr2+5Nlr3−24N2l r
3l r

4 +6N2r r
S,1

)

M2
π

+
1

N2F4

(

−
323
36

+124Nlr1,2 +130Nlr2

)

M2
π ln

[

M2
π

µ2

]

−
65

3N2F4M2
π ln

[

M2
π

µ2

]2

. (5.4)

At two loops, the curvaturecV has non-trivial contributions and can be included in our analysis

cV =
1

60NF2

1
M2

π
+

1
N2F4

(

N
720

−
8429
25920

+
N
3

l r
1,2 +

N
6

l r
6 +N2r r

V,2

)

+
1

N2F4

(

1
108

+
N
3

l r
1,2 +

N
6

l r
6

)

ln

[

M2
π

µ2

]

+
1

72N2F4 ln

[

M2
π

µ2

]2

. (5.5)

The analytic terms containingr r
X,i (X =V,S, i = 1,2) represent contributions fromO(p6) chiral

Lagrangian. We denote the linear combinationl r
1−l r

2/2 appearing commonly in〈r2〉V andcV as
l r
1,2.

While the two-loop formulae involve many
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Figure 6: Chiral extrapolation of〈r2〉S from si-
multaneous to〈r2〉V,S andcV based on two-loop
formulae.

LECs, the simultaneous fit to〈r2〉V and cV has
only four free parametersl r

6, l r
1,2, r r

V,1 andr r
V,2. This

fit plotted in Fig. 5 shows that the two-loop contri-
butions are significant in our simulated region of
mud. We obtain a reasonable value ofχ2/dof∼0.5,
and the extrapolated values of〈r2〉V and cV are
consistent with experiment [1].

The inclusion of〈r2〉S into the simultaneous
chiral fit introduces additional four free parame-
ters. In order to stabilize this fit, we fixl r

2 and l r
3,

which appear only in the two-loop terms, to a phe-
nomenological estimatēl2=4.31 [10] and a lattice
result l̄3=3.44 from our analysis of the pion spectroscopy [9]1. The extrapolation of〈r2〉V andcV

turns out to be consistent with those in Fig. 5. The extrapolation of 〈r2〉S is shown in Fig.6. From
this simultaneous fit, we obtain

〈r2〉V = 0.404(22)(22) fm2, 〈r2〉S = 0.578(69)(46) fm2, cV = 3.11(14)(86) GeV−4. (5.6)
1Theµ independent convention̄l i is defined froml ri =γi(l̄ i + ln[M2

π/µ2])/2N with γ3=−1/2, γ4=2 andγ6=−1/3.
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The first error is statistical. The second is systematic error estimated by changing the inputs for
l r
2 andl r

3 to different phenomenological estimates in Ref.[1], and bylimiting the fitting data to the
radii (〈r2〉V and〈r2〉S) or those in the vector channel (〈r2〉V andcV). We also test〈r2〉S from the
cubic parametrization for theq2 dependence ofFS(q2). Note that all the extrapolated values in
Eq. (5.6) are consistent with experiment.

We obtain l̄6 = 11.8(0.7)(1.3), l̄4 = 4.06(44)(99), and l r
1,2 =−2.9(0.8)(2.4)×10−3 for the

O(p4) LECs. Our estimate of̄l6 is slightly smaller than 16.0(0.9) obtained in Ref.[1] partly due
to a deviation ofF between our lattice determination [9] and two-loop ChPT [12]. We note that
l̄4 is consistent with our determination̄l4=4.12(56) from Fπ [9] and a phenomenological estimate
4.39(22) [10]. Our results for theO(p6) LECs arer r

V,1 =−1.1×10−5, r r
V,2 =−4.0×10−5 and

r r
S,1=1.3×10−4 with substantial uncertainty of 50 – 100 %.

6. Conclusions

In this article, we report on our calculation of the pion formfactors with two flavors of dynam-
ical overlap quarks. By employing the all-to-all quark propagators,FS(q2) is calculated including
contributions from the disconnected diagrams for the first time. The one-loop ChPT formulae fail
to reproduce our data ofFS(q2). In our analysis extended to two loops, we observe significant
two-loop contributions at our simulated quark masses, and obtain 〈r2〉V,S andcV consistent with
experiment. Further investigations of systematics due to the fixed global topology and quenching
of strange quarks are in progress by direct simulations in the non-trivial topological sectors and in
three-flavor QCD.

Numerical simulations are performed on Hitachi SR11000 andIBM System Blue Gene Solu-
tion at High Energy Accelerator Research Organization (KEK) under a support of its Large Scale
Simulation Program (No. 08-05). This work is supported in part by the Grant-in-Aid of the Ministry
of Education (No. 18340075, 18740167, 19540286, 19740160,20025010, 20039005, 20340047,
and 20740156), the National Science Council of Taiwan (No. NSC96-2112-M-002-020-MY3,
NSC96-2112-M-001-017-MY3, NSC97-2119-M-002-001), and NTU-CQSE (No. 97R0066-69).
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